液压伺服系统的设计步骤大致如下:
明确设计要求;
拟定控制方案,画出系统原理图;
静态计算:确定动力元件参数,选择系统组成元件;
动态计算:确定系统组成元件的动态特性,画出系统方块图,计算系统稳定性、响应特性和静态精度;
校验系统动、静态品质,需要时对系统进行校正。
在设计过程中,以上各步骤实际上是交叉和反复进行的,直至获得满意结果为止。
在设计时,首先要根据主机要求明确设计任务,包括:
采用机液伺服还是电液伺服
2.控制方案决定以后,就可以构成控制系统职能方块图,从原理上满足系统设计的要求。在构成职能方块图时,还要考虑输入信号发送器和反馈传感器的形式。因为输入信号和反馈信号的形式不同,系统电子部分的方块结构也不同。
液压动力元件参数的选择是系统静态设计的一个主要内容。动力元件参数选择包括系统的供油压力Ps,液压执行元件的主要规格尺寸,即液压缸的有效面积Ap,或液压马达的排量Dm,伺服阀的最大空载流量Qom。当选择液压马达作执行元件时,还应包括齿轮传动比i的选择。
(一)供油压力的选择
选择较高的供油压力,可以减小液压动力元件、液压能源装置和连接管道等部件的重量和尺寸,可以减小压缩性容积和减小油液中所含空气对体积弹性模量的影响,有利于提高液压固有频率。但执行元件主要规格尺寸(活塞面积和液压马达排量)减小,又不利于液压固有频率提高。
选择较低的供油压力,可以降低成本,可以减小泄漏、减小能量损失和温升,可以延长使用寿命,易于维护,噪声较低。在条件允许时,通常还是选用较低的供油压力。
在一般工业的伺服系统中,供油压力可在2.5~14MPa的范围内选取,在军用伺服系统中可在21~32MPa的范围内选取。
(二)液压执行元件主要规格尺寸和伺服阀空载流量的确定
1.按负载匹配确定
有负载匹配的图解法和负载最佳匹配的解析法两种。按负载匹配确定执行元件的主要规格尺寸和伺服阀空载流量,系统效率较高,适合于较大功率的伺服系统。
2.按最大负载力和最大负载速度确定
工程上常用近似计算的方法确定执行元件的主要规格尺寸和伺服阀空载流量。
按最大负载力FLmax确定执行元件的规格尺寸,并限定伺服阀的负载压力PL≤2Ps/3,则液压缸的有效面积为
对系统的典型工作循环加以分析,可以确定最大负载力FLmax。但作工作循环图是比较麻烦的,有时难以确定。作为近似计算,可以认为各类负载力同时存在且为最大值。
这种近似的计算方法偏于保守,计算出的活塞面积和伺服阀空载流量偏大,系统功率储备大。
另一种方法是按最大负载力确定液压缸活塞面积,然后按负载最大功率点的速度或最大负载速度确定伺服阀的空载流量,根据两者中的较大值选择伺服阀。
3.按液压固有频率确定执行元件的主要规格尺寸
液压固有频率可按系统要求频宽的5~10倍来确定。按液压固有频率确定的执行元件规格尺寸一般偏大,系统功率储备大。
(三)伺服阀的选择
(四)齿轮传动比的选择
1)首先必须满足负载速度的要求,即
最高转速和最低转速所要求的传动比可能是不一样的,两者之间必须满足
3)应使负载加速度尽量大,提高负载加速能力。负载轴上的力矩平衡方程为
JL--末级齿轮和负载的转动惯量;
将上式对i求导令其等于零,求得最佳传动比为
此时,负载最大加速度为
采用齿轮减速,高速液压马达容易得到;价格便宜,同时改善了系统低速平稳性,但存在齿隙非线性。
(五)其它元件的选择
反馈传感器或偏差检测器、交流误差放大器、解调器、直流功率放大器等元件的选择。
在选择这些元件时,要考虑系统在增益和精度上的要求。根据系统总误差的分配情况,看它们的精度(如零漂、不灵敏度等)是否满足要求。反馈传感器或偏差检测器的选择特别重要,检测器的精度应高于系统所要求的精度。反馈传感器或偏差检测器的精度、线性度、测量范围、测量速度等要满足要求。交流误差放大器、解调器、直流功率放大器的增益应满足系统要求,而且希望增益有一个调节范围。在增益分配允许的情况下,应使交流放大器保持较高的增益,这样可以减小直流放大器漂移引起的误差。